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TECHNICAL PAPER

MODELING DIGITAL CONTROL SYSTEMS WITH
MA-PREFILTERED MEASUREMENTS

I. INTRODUCTION

The usual problem posed in books on digital control systems is to find a feedback controller for a
continuous-time plant driven by a zero-order-hold with asampled output as shown in Figure 1 (Jacquot [1],
p. 126). Here x(t) is an nxl state vector, u(k) is an rxI control input vector, y(k) is an mx| output or mea-
surement vector, F is an nxn system matrix, G is an nxr control matrix, and C; is an mxn output matrix.
Since yi(k) = Cx(k) where k is the usual shorthand notation for time kT, y(k) represents an instantaneous
measure of the system at the sampling instant kT. Hence, the plant in Figure 1 will be regarded as having
instantaneous measurements for outputs. It is well known that this system can be modeled at the sampling
instants by the set of discrete state equations

x(k+1) = Ax(k) + Bu(k) (N
yik) = Cry(k) (2)

where A and B are constant matrices (Jacquot [1], p. 127).

x(0[ ¢ x (t) yi(k
u (k) Z0H L—l.(t): ++ gdt X c /T Yi(k)

Y

Figure 1. Continuous-time plant driven by a zero-order-hold with
instantaneous measurements.

Unfortunately, not all linear time-invariant digital control systems found in the real world have
plants which fit the model shown in Figure 1. For example, there exists systems in which the output, rather
than being an instantaneous measure of the system at the sampling instants, represents an average measure
of it over the time interval between samples. Such systems can be found in the aerospace field wherever




startrackers and some state-of-the-art rate gyroscopes and accelerometers are used, to name a few (Polites
[2], p. 6). In one system of this type, sets of discrete measurements are averaged to produce discrete outputs
as shown in Figure 2. The continuous-time output z(t) is sampled every T/ seconds. Every N samples are
averaged to generate the averaged measurement vector y AkT), every T seconds. In Figure 2, z(t) and yA(kT)
are both pxl vectors; Cy is a pxn output matrix. Note, the plant in Figure 2 allows for the possibility of
instantaneous measurements also. yi(kT) is an mx! instantaneous measurement vector and so C; is an mxn
output matrix. Previously, Polites [2] developed discrete state variable formulations for the plant in Figure
2 which have the same general form as equations (1) and (2).
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Figure 2. Continuous-time plant driven by a zero-order-hold with
instantaneous and averaged measurements.

Now consider the plant in Figure 3, which is a generalization of the one in Figure 2. Here, the
continuous-time output z(t) is sampled every T/y seconds just as in Figure 2. However, now every N
samples are multiplied by the gxp weighting matrices H;j, j = 0,...,N-1, and then summed to generate the
gx1 output vector ye(kT), every T seconds. Functionally, this is equ1valent to passing the measurements
sampled every T/« seconds through a multi-input/multi-output moving average (MA) process with coefTfi-
cient matrices H;, j = 0,1,...,N-1 [3]. The output of the MA prefilter is sampled every T seconds to
generate ve(kT). InFigure 3, Cg is a pxn output matrix and z(t) is a px! vector. A special case exists when H;
="/ 1,j =0,1,...,N-1, where I is a pxp identity matrix. Then, the plant in Figure 3 degenerates to the
plant in Figure 2, assummg of course that Cg = Ca. Another special case occurs when Cr = 0. Then, the
plant in Figure 3 degenerates to the plant in Figure 1.
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Figure 3. Continuous-time plant driven by a zero-order-hold with instantaneous
and MA-prefiltered measurements.




This brings us to a statement of the problem of this paper. Namely, what are discrete state variable
representations for the plant with MA-prefiltered measurements shown in Figure 3? With these, the control
system engineer can apply existing techniques to accurately design digital feedback controllers for this type
plant. Without these, he must resort to approximate methods which could be either less accurate or else
very time consuming if iterative. Fortunately, the latter will not be necessary, because the former is made
possible by the formulations derived in Section III. Prior to this, Section Il reviews some results to date for
the plant with instantaneous measurements shown in Figure 1. These will be utilized in Section III. Section
IV presents an example which illustrates how to obtain the coefficient matrices for each formulation
derived in Section III. Section V contains the conclusions and final comments.

Il. PRELIMINARY

The plant in Figure 1 can be modeled at the sampling instants by the discrete state equations (1) and
(2) where

é® =L"[SI-F)'] , (3)

A=¢T) , (4)
and

B=[ f T¢(>\) d\] G (5)

as in Reference 1, p. 126. ¢(t) and A are nxn matrices while B is an nxr matrix. A and B can be determined
analytically using equations (3) to (5). An altematlve approach, which is also quite suitable for numerical

computation, is as follows [4]. ¢(t) and f ¢&(N) dA can be expressed in the form of matrix exponential
series as

d(t) = E — (6)

i!

and

o d]

t Fi ti+]
[ o0 ax = Eo (i+1)!

(7




respectively. From equations (6) and (7),
o =1+F[[ o0vdr] , (8)

where Iis an nxn identity matrix. Hence, [,T ¢(\) d\ can be determined using equation (7) witht = T and

this result substituted into equation (8) to get &(T). With these results, A and B can be found using equations
(4) and (5).

lll. STATE VARIABLE REPRESENTATIONS FOR PLANTS WITH
MA-PREFILTERED MEASUREMENTS

For the plant in Figure 3,

X0 = 6t~ )x(to) + [ 6t—1) Gu(rydr ©)

as in Jacquot [1], p. 125. Let

,Yl(k)
yrk) = (10)
yr(k)
where
(k) = Cyx(k) (11)
and
N-1 T
ye(k) = 2 Hjz <kT—j—> . (12)

Lett = kT—j(T/N)and t, = (k— 1)T where k = 0,1,2,... and j = 0,1,..., N— 1. Hence, equation (9)
can be written as




kT-j(T/N)
fkT — i1y = &(T - j-Dyxik— DT + [ SKT - j-L — 1) Gu(r)dr
N N (k-D)T N

Since
z() = Cex(t) ,
it follows that equation (12) can be written as

N-1 T
yr(k) =,E H; Crx(kT — j )
) 10

From equations (13) and (15),

N-1 T N-1 KT-j(T/N)
ye) = [ HCrd(T—jOIxk-DTI + 2 HCe) okt —j L — mGurrydr
j=0 = (k-1T N

Since
ut) = uf(k—DT] , (k—DT=t<kT ,

equation (16) can be written as

N-1 - N-1 kT-j(T/N) T
¥ =[ = H;Crd(T—j)] k- DT+ [ 2 H;Cef ST —j~r — Dd7]Gul(k — T]
i=0 N =0 k-DT

Consider the second term in the right hand side of equation (18). Using the transformation
A = kT—j(T/N)—7 in it, equation (18) becomes

N-1 T N-1 T-j(T/N)
yr(k) = [ _20 H; Cr (T —j:0] sl = DT] + [ 2 H; Ce J  6MdN] G ulk—1)T]
1= )= 0

(13)

(14

(15)

(16)

(17)

. (18)

(19)



Let

N-1
D, = 2 HCed(T-jl) (20)
j=0 N
and
N-1 T-j(T/N)
E. =[2 HCJ ¢MdA]G . @1)
j=0 0

From equations (19) to (21),

yrkk+1) =Dy x(k) + E u(k) , (22)

using the standard shorthand notation for kT. Letting

nk+1) =D, x(k) + E+ u(k) (23)

implies that

yr(k) =n(k) . (24)

For the plant in Figure 3, equation (1) applies just as it does for the plant in Figure 1. Using it and equations
(10), (11), (23), and (24), the discrete state equations for the plant in Figure 3 can be written as

x(k+1) A 0] jxk B x(k)
= + uk) = [A1|] + [Bri]uk) (25)
n(k+1) D, 0} |mk) E, n(k)
yi(k) Ci 0 |x(k) x(k)
yik) = = = [Cri) . (26)
yr(k) 0 Ijjnk n(k)




A,B,D,,andE , canbe evaluated analytically using equations (3), (4), (5), (20), and (21). An alternative
approach, which can be either analytical or numerical, is as follows. Let t = T— j(T/N),
i = 0,1,...,N— 1 and use equation (7) to determine [T/ ™™ ¢(\)d\, j = 0,1,...,N— 1. Use these results
in equation (8) to get ¢['T—j(T/N)], j = 0,1,...,N~1. At this point, D, and E, can be found using
equations (20) and (21). A and B can be evaluated using the procedure outlined in Section II.

Notice in the formulation given by equations (25) and (26), there are (n + q) states where n is the
number of states in x(t), and hence x(k), and q is the number of prefiltered measurements in yg(k). Hence,
this formulation has (n + q) eigenvalues, which are the eigenvalues of At in equation (25). It is straightfor-
ward to show that n of these are the eigenvalues of A and the other q are zero.

For the special case in which H;, j = 0,1,...N-1 are pxp matrices such that

1 .
H; = ﬁ—l , j=0,1,...,N-1 27

where I is a pxp identity matrix, the MA-prefiltered measurements degenerate to simple averaged mea-
surements. In this case, it follows from equations (20), (21), and (27) that

D+ - CF A+

where
N-1

" 1 . T

Ay = — 2 T —j—
and
where

) -1 T-i(T/N)

B, = [L = [ sva]c

N j=0 "0




These results match those previously published by Polites [2] for digital control systems with averaged
measurements.

For the plant in Figure 3, an alternative formulation to equations (25) and (26) can be derived by
letting t = kT—j(T/N) and t, = kT in equation (9) where k = 0,1,2,... and j = 0,1,...,N-1. Hence
equation (9) becomes

KT-j(T/N)
r(r-i D) = e (5 D) sem + [ ¢ (k1§ T 1) Gurr 28)
kT
From equations (12), (14), (17), and (28),
NI KT-j(T/N)
o = [ S Hceo (- )] XkT) + [ E e/ & (kT-jL 1) dr]Gua-nm -
i=0 kT N (29)

Consider the second term in the right hand side of equation (29). Using the transformation A = kT —
J(T/N) — 7 in it, equation (29) becomes

N-1 N- SCTIN)
yelo = [ S HCrd 58] sm + [_20 HCr [ oA | Gulk—1T) . (30)
j= i=
Let
N-1 T
D_. = Jzzo HJCF(!)(“JE (31)
and
-J(T/N)
E = [ 2 HCef sdr] G (32)
From equations (30) to (32),
ye(k) = D_x(k) + E_u(k—1) , (33)




using the standard shorthand notation for kT. Letting

nk+1) = uk) (34)
implies that
yr(k) = D_x(k) + E_m(k) (35)

From equations (1), (10), (11), (34), and (35), the alternative set of discrete state equations for the plant in

Figure 3 is
x(k+1) A x(k) B x(k)
= + uk) = [Ar2] + [BraJu(k) (36)
nk+1) 0 n(k) I (k)
yi(k) G 0 jfx(k) x(k)
yrk) = - ‘ = [Cp2} 37
yr(k) D_ E_ (k) (k)

A, B, D_, and E_ can be evaluated analytically using equations (3), (4), (5), (31), and (32). An alternative
approach, which can be either analytical or numerical, is as follows. Lett = —j(T/N),j = 0,1,...,N-1
and use equation (7) to determine || )‘jm N d(N)dn, j = 0,1,...,N-1. Use these results in equation (8) to get
o[ —j(T/N)],j = 0,1,...,N-1. Atthis point, D_and E_can be found using equations (31) and (32). A and B
can be evaluated using the procedure outlined in Section II.

Notice in the formulation given by equations (36) and (37), there are (n+r) states where n is the
number of states in x(t), and hence x(k), and r is the number of control inputs in u(k). Hence, this formula-
tion has (n +r) eigenvalues, which are the eigenvalues of A, in equation (36). It is straightforward to show
that n of these are the eigenvalues of A and the other r are zero.

For the special case in which H;, j = 0,1,...,N-1, are pxp matrices as in equation (27), the MA-

prefiltered measurements degenerate to simple averaged measurements. In this case, it follows from
equations (27), (31), and (32) that

D_ = CFA




where
and

where
-J(T/N)

N-1
1
_ [T\Tgo {) N ] G

oo
Il

These results match those previously published by Polites [2] for digital control systems with averaged

measurements.

Now suppose the plant in Figure 3 has the prefiltered measurement vector modified as shown in

Figure 4. From Figure 4,

yi(k) = yr(k) — E_ u(k—1)

(38)

Furthermore, equations (36) and (37) also apply to the plant in Figure 4. Eliminating m(k) and yg(k) in

equations (36) to (38) yields the discrete state equations

x(k+1) = A x(k) + B u(k) = [Ars] x(k) + [Brs] u(k)

yi(k) G
yr3(k) = = x(k) = [Cr3] x(k)
i vi(K) D_

(39)

(40)

. Compare equations (39) and (40) for the plant in Figure 4 with equations (1) and (2) for the plant in
Flgure 1. Notice that the plant equations (1) and (39) are the same. Only the output equations (2) and (40)
are different. Obviously, the discrete state equations (39) and (40) for the plant in Figure 4 have n states and

n eigenvalues, which are the eigenvalues of A.

10
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Figure 4. Plant in Figure 3 with a modified prefiltered measurement vector.

IV. AN EXAMPLE

Consider the double integrator plant in Figure 5 where the instantaneous measurement y;(kT)
measures X;(kT) and the MA-prefiltered measurement ye(kT) estimates X, (kT) = x,(kT). This example is
rather basic in relation to the kind of problems the formulations in Section III can handle. However, it is
chosen for pedagogical reasons to illustrate the basic procedures one uses to obtain discrete state variable
models for plants with MA-prefiltered measurements using the formulations in Section III.

Comparing Figures 3 and 5,

0 I

F = , 41)
0 o
K

G = , (42)
R

G =11 0] , (43)

Ce=1[1 o0 (44)

11
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Figure 5. Plant for the example.

=]

and

2
le_?

Utilizing equations (7), (8), and (41),

t t L2
J dodn =
0 0 t
and
1 t
b)) =
0 1

From equations (4), (5), (42), (47), and (48),

12

Y g (kT)

(45)

(46)

(47)

(48)

(49)




’T"

and
B = ) (50)

Since N = 2 in equations (20) and (21), it follows that
D, = Hy Ce &(T) + H, Cg $(T/2) (51)

and

T T/2
E, = | H, Cr { b(\) dn + H, Cp g svdn] G . (52)

From equations (42), (44) to (48), (51), and (52),

D, = [0 1] (53)

and

E, = T . (54)

Blw

Utilizing equations (43), (49), (50), (53), and (54), the discrete state equations for the plant in Figure 5 can
be expressed in terms of equations (25) and (26) with

I T o]
A =f0 1 0 :
o 1 0|

13



- - -
2__
BTI = T s
3
— T
l—4 e
and
1 0 0
Cr, =
0 0 1

A check will show these state equations to be observable and controllable for T > 0.

Utilizing equations (31) and (32) with N = 2,
D_ = H, Ce $(0) + H, Cg $(—T/2) (55)

and
-(T72)

o
SN dh + Hy Cr [ o) d)\] G . (56)
0

E = [HOCFJ(;

Making the proper substitutions into equations (55) and (56) yields

D.=[0 1] (57)

and

-D-lv%

(38)

14




Utilizing equations (43), (49), (50), (57), and (58), the discrete state equations for the plant in Figure 5 can
be expressed in terms of equations (36) and (37) with

[Ar.] =f 0 1 0 )

[Bra] =| T ’

and

ﬁ 10 0

[Cr2] =
0 1 —T/4

A check will show these state equations to be observable and controllable for T > 0.

If the plant in Figure 5 is modified according to Figure 4 where E_ is given by equation (58), the
result is shown in Figure 6. Utilizing equations (43), (49), (50), and (57), the discrete state equations for the
plant in Figure 6 can be expressed in terms of equations (39) and (40) with

(1T
[Ar3] = ,
i 0 1
-2
2
[Br3] = ,
i T

15




and

[Cri] =

Again, a check will show these state equations to be observable and controllable for T > 0. One may
recognize these to be the discrete state equations for the double integrator plant with two instantaneous
measurements as shown in Figure 7. Hence in Figure 6, x,(kT) is being observed by sampling x,(t) every
T/2 seconds, prefiltering the samples with a backward difference equation, and modifying the result as
shown in Figure 6.

o Y) (kT)
T
= x T TR
ol 8 5V N AP Sl N /P ] vk )= "RZ)‘;W V2l |l vE!(T)
) o xq=2 % () T+ k
>~ DELAY - -
Figure 6. Plant in Figure 5 with a modified prefiltered measurement.
X9 =X x y;q (kT)
t 2™ M t 1
o
T
Figure 7. Double integrator plant with two instantaneous measurements.
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V. CONCLUSIONS

Two different discrete state variable formulations were derived for the continuous-time plant driven
by a zero order hold with a combination of instantaneous and MA-prefiltered measurements. This plant is
shown in Figure 3 and the discrete state variable formulations are presented in equations (25), (26), (36),
and (37). The first formulation has (n + q) states where n is the number of states in x(t), and hence x(k), and
q is the number of prefiltered measurements in ye(k). The second formulation has (n +r) states where r is
the number of control inputs in u(k). If the prefiltered measurement vector is modified as shown in Figure 4,
a third formulation can be derived as shown in equations (39) and (40). This one has n states and the same
plant equation as equation (1) for the plant in Figure 1.

With regard to which formulation is the best to use for modeling a given plant with MA-prefiltered
measurements, the following advice is offered. Choose the one which yields the least number of states in
the resulting discrete state equations. In general, this is the formulation which has n states, equations (39)
and (40). However, this formulation does require modifying the prefiltered measurement vector as shown
in Figure 4. If this is either impossible or else undesirable, for whatever reason, then choose the formula-
tion, from the remaining two, which yields the fewest number of states. Hence, if the plant in question has
fewer prefiltered measurements than control inputs (i.e., q <r), choose the formulation which has (n +q)
states, equations (25) and (26). If the plant has fewer control inputs than prefiltered measurements Ge.,r<
q), choose the formulation which has (n+r) states, equations (36) and (37). If the number of prefiltered
measurements equals the number of control inputs (i.e., q = r), the choice is arbitrary. By following these
guidelines, the resulting set of discrete state equations is more likely to be observable and controllable, plus
there will be fewer states and, hence, fewer eigenvalues to contend with in designing the feedback
controller.

Having the formulations derived in this paper, the control system engineer can apply standard avail-
able design techniques to accurately design a digital feedback controller for any plant which fits the model
shown in Figure 3. He does not have to resort to approximate methods which may be either less accurate or
else time consuming, if iterative procedures are required.

17
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